Metric Conversion

Example
1:
$628 \mathrm{mg}=$
\qquad g
(a) find milli on your chart
(b) we want to go to grams
(c) we need to move 3 steps up the chart
(d) remember each step is a factor of 10 $10 \times 10 \times 10=1000$
(e) Since we are moving up the chart, we divide which means we move the decimal place 3 places to the left.
(f) $6,2,8$:
(g) $628 \mathrm{mg}=\underline{0.628 \mathrm{~g}}$
$0.879 \mathrm{~kL}=$ \qquad L
(a) find kilo on your chart
(b) we want to go to litre
(c) we need to move 3 steps down the chart
remember each step is a factor of 10
(d)
$10 \times 10 \times 10=1000$
Since we are moving down the chart,
(e) we multiply which means we move the decimal place 3 places to the right.
(f) 0.8,7,9
(g) $0.879 \mathrm{~kL}=\underline{879 \mathrm{~L}}$
Example 3:
$721 \mathrm{~cm}=$ \qquad km
(a) find centi on your chart
(b) we want to go to km
(c) we need to move 5 steps up the chart
(d) each step is a factor of 10
10 X 10 X 10 X 10 X $10=100000$
since we are moving up the chart we
(e) divide which means we move the decimal place 5 places to the left
(f) $\times 0.021$.
(g) $721 \mathrm{~cm}=\underline{0.00721 \mathrm{~km}}$

Exercises

1.	$127 \mathrm{~mL}=$	L	16.	$7.8 \mathrm{hm}=$	m
2.	$10.1 \mathrm{~L}=$	mL	17.	$8.75 \mathrm{mg}=$	dg
3.	$0.15 \mathrm{~L}=$	mL	18.	$950 \mathrm{hm}=$	km
4.	$8 \mathrm{~mL}=$	L	19.	$0.08 \mathrm{dag}=$	hg
5.	$2.89 \mathrm{~kg}=$	g	20.	$250 \mathrm{hg}=$	g
6.	$12.6 \mathrm{~g}=$	mg	21.	$1.8 \mathrm{cg}=$	mg
7.	$0.5 \mathrm{~kg}=$	mg	22.	2.8 hg =	dg
8.	$12.5 \mathrm{cg}=$	g	23.	$191 \mathrm{dm}=$	mm
9.	$0.15 \mathrm{~kg}=$	cg	24.	$89 \mathrm{hm}=$	dm
10.	$260 \mathrm{mg}=$	cg	25.	$250 \mathrm{mg}=$	$\mu \mathrm{g}$
11.	$2.5 \mathrm{~mm}=$	cm	26.	$528 \mathrm{Mm}=$	km
12.	3.8 m =	mm	27.	$8500 \mu \mathrm{~L}=$	L
13.	$29 \mathrm{~m}=$	cm	28.	$0.8750 \mathrm{~mm}=$	nm
14.	$1500 \mathrm{~mm}=$	m	29.	$1.8 \times 10^{6} \mathrm{~L}=$	ML
15.	$15 \mathrm{~m}=$	km	30.	$1.500 \mu \mathrm{~m}=$	nm

Capacity Units \Leftrightarrow Cubic Units

The capacity units correspond to a factor of 10 .

The cubic units correspond to a factor of 1000 between each unit.

The units shaded from capacity units to cubic units are the same value.

$$
\begin{aligned}
& 1 \mathrm{KL}=1 \mathrm{~m}^{3} \\
& \mathrm{lL}=1 \mathrm{dm}^{3} \\
& 1 \mathrm{~mL}=1 \mathrm{~cm}^{3}
\end{aligned}
$$

When using this chart the student may find it easier to move up or down the capacity units and move across to the cubic units where they are equal or vice versa.

Exercises

1. $436 \mathrm{~mL}=$
2. $52 \mathrm{~kL}=$
3. $\quad 528 \mathrm{~L}=$
4. $865 \mathrm{~mL}=$
5. $\quad 0.01234 \mathrm{~kL}=$
6. $\quad 3490 \mathrm{~mL}=$
7. $250 \mathrm{~m}^{3}=$
8. $495 \mathrm{~kL}=$
9. $\quad 7.21 \mathrm{~L}=$
10. $64 \mathrm{dam}^{3}=$
11. $8000 \mathrm{~cm}^{3}=$

L 16. $\quad 51.8 \mathrm{dm}^{3}=$
L 17. $\quad 21.3 \mathrm{~cm}^{3}=$
cL 18. $\quad 5.3 \mathrm{cL}=$
cL 19. $2143 \mathrm{~kL}=$
mL
20. $43 \mathrm{daL}=$
cm^{3}
kL $\quad 22$.
$\mathrm{m}^{3} \quad$ 23. $\quad 0.000628 \mathrm{~km}^{3}=$
$\mathrm{dm}^{3} \quad$ 24. $\quad 0.16 \mathrm{dm}^{3}=$
$\mathrm{m}^{3} \quad$ 25. $\quad 7.2 \mathrm{hL}=$
mm^{3}
26. $163 \mathrm{~mL}=$
dL
L
cm^{3}
dam ${ }^{3}$
cm^{3}
kL
dm^{3}
kL
cL
m^{3}
dm^{3}

12.	$5.91 \mathrm{~m}^{3}=$	dm^{3}	27.	$0.008254 \mathrm{~L}=$	mm^{3}
13.	$0.0246 \mathrm{hm}^{3}=$	m^{3}	28.	$528 \mathrm{~m}^{3}=$	daL
14.	$2146 \mathrm{~mm}^{3}=$	dm^{3}	29.	$0.0495 \mathrm{hm}^{3}=$	hL
15.	$21.3 \mathrm{~m}^{3}=$	dam 3	30.	$0.00865 \mathrm{dam}^{3}=$	mL

Geometric Calculations Using Metric

Be sure all dimensions are in the same metric units when doing geometric calculations. Use 3.14 for π

Example 1

Solution:

Example 2

Solution:

If a rectangle is 0.90 m by 50 cm find
(a) the perimeter in meters
(b) the area in m^{2}
(a) change 50 cm to $\mathrm{m}=0.50 \mathrm{~m}$
$\mathrm{P}=21+2 \mathrm{w}$
$P=2(0.90 \mathrm{~m})+2(0.50 \mathrm{~m})$
$\mathrm{P}=2.8 \mathrm{~m}$
(b) $\mathrm{A}=\mathrm{lw}$
$A=(0.90 \mathrm{~m})(0.50 \mathrm{~m})$
$\mathrm{A}=0.45 \mathrm{~m}^{2}$

A square has a surface area of $196 \mathrm{~cm}^{2}$.

$$
A=s^{2}
$$

Find the length of each side in cm and mm .

$$
\begin{aligned}
& \mathrm{A}=\mathrm{s}^{2} \\
& 196 \mathrm{~cm}^{2}=\mathrm{s}^{2} \\
& \quad s=\sqrt{196 \mathrm{~cm}^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{s}=14 \mathrm{~cm} \\
& \mathrm{~s}=14 \mathrm{~cm} \times \frac{10 \mathrm{~mm}}{1 \mathrm{~mm}} \\
& \mathrm{~s}=140 \mathrm{~mm}
\end{aligned}
$$

Exercises

1.

$C=2 \pi r$ $A=\pi r^{2}$

Find the circumference and the area of the circle.

3.

Find the area of the rectangle in cm^{2}.

Find the perimeter of the triangle in cm.

A basketball has a
4.

$\mathrm{A}=4 \pi \mathrm{r}^{2}$ $V=\frac{4}{3} \pi r^{3}$ diameter of 30 cm. Find
(a) the surface area
(b) the volume.
5. $\mathrm{A}=\pi \mathrm{r}^{2}+\pi \mathrm{rl}$
$V=1 / 3 \pi r^{2} h$
A cone has the following dimensions:
$\mathrm{h}=0.60 \mathrm{~m}$
$\mathrm{l}=0.65 \mathrm{~m}$
$\mathrm{r}=25 \mathrm{~cm}$
Find the volume in cm^{3}.
Find the surface area in m^{2}.

The area of a field is $2.0 \mathrm{~km}^{2}$. If the length of the field is 2.0
6. km, what is the width?

If the area of the circle is $0.090746 \mathrm{~m}^{2}$, what is the radius in cm?
7.

What is the diameter in mm?

8. A contractor needs to know the amount of glass needed to build a window with this shape. Find the area in m^{2}.

9.
$\mathrm{V}=\pi \mathrm{r}^{2} \mathrm{~h}$
A manufacturer must make a metal can with a capacity of 1.0 L . If the workers at the factory know the height of the can must be 24 cm , what minimum amount must the radius be?

A fish tank measures 90 cm by 60 cm by 400 mm high.
10. (a) What is the volume of the tank in cm^{3}. $(\mathrm{V}=\mathrm{lwh})$
(b) What is the capacity of the tank in liters?
(c) To keep the fish from jumping out of the tank it can only be filled to a point 100 mm from the top. What will be the capacity of the tank now?

Answer Key available in Learner Support Services, Bow Valley College.
Prepared by
June Jeffery, LAC
Marion Tichler, Typist
January 1994

