Significant Digits
Definition: The number of digits used in a number to specify its precision.

Rules for Significant Digits:

Non-zero digits are significant.
 1. $\quad \checkmark \backslash \checkmark \checkmark \checkmark \checkmark$
 543.1236 significant digits
 $\checkmark \checkmark$
 1273 significant digits

Leading zeros are NOT significant
2.

```
x xxx /
0.0004 one significant digit
```

3. \quad Trailing zeros to the right of a decimal are significant.

$\times \times \times \times$	
0.00050	2 significant digits
$\checkmark \checkmark \not \checkmark$	
50.00	4 significant digits

Zeros between non-zero numbers are significant.
4.

```
*/\/\/
    520.003 6 significant digits
```

Final zeros are significant.
5.
$/ \sqrt{ } / \sqrt{ }$
(a) 49004 significant digits

OR
(b) Scientific notation

```
*
4.9\times1\mp@subsup{0}{}{3}}2\mathrm{ 2 significant digits
```


Rule for Addition and Subtraction

Check the decimal place and round off to the least precise digit.

Addition

1)

627.1
$635:$-least precise
85.27
2.189
1350.189
Answer: 1350.

$$
\begin{aligned}
& \begin{array}{l}
4.3227 \\
70.01 \\
8.35 \\
\frac{95.4}{178.087} \\
\text { Answer: } 178.1
\end{array} \text { least precise }
\end{aligned}
$$

When using scientific notation change to the larger exponent. Add the digits and keep the changed exponent. Be sure the answer is in proper scientific notation and significant digits.

$\begin{aligned} & 1.47 \mathrm{x} \\ & 10^{3} \end{aligned}$	+	1.78×10^{2}	$\square \leftarrow$	change smaller exponent to same value as larger exponent
$\begin{aligned} & 1.47 \mathrm{x} \\ & 10^{3} \end{aligned}$	+	0.178×10^{2}	$=$	1.648×10^{3}
		Answer: 1.65 x 10^{3}		
$\begin{aligned} & 7.21 x \\ & 10^{5} \end{aligned}$	+	3.23×10^{3}	$\square \leftarrow \square$	smaller exponent
$\begin{aligned} & 7.21 x \\ & 10^{5} \end{aligned}$	+	0.0323×10^{5}	$=$	7.2423×10^{5}
		$\begin{aligned} & \text { Answer: } 7.24 \text { x } \\ & 10^{5} \end{aligned}$		

Subtraction

2)

536.1 - least precise
-64.039
472.061
Answer: 472.1

$$
\begin{aligned}
& 114.3 \\
& \frac{6.16}{108.14} \\
& \text { Answer: least precise } \\
& \\
& \hline
\end{aligned}
$$

When using scientific notation, change to the larger exponent, subtract the digits and keep the changed exponent.
3.98×10^{4}

$-1.32 \times 10^{3}$$\quad \leftarrow$ smaller exponent | 3.98×10^{4} |
| :---: |
| $\frac{-0.132 \times 10^{4}}{3.848 \times 10^{4}}$ |

Answer: 3.85×10^{4}

8.46×10^{-6}		8.46×10^{-6}
$\underline{-7.50 \times 10^{-7}}$	\leftarrow smaller exponent	$\underline{-0.750 \times 10^{-6}}$
		7.71×10^{-6}
		7.71×10^{-6}

Rule for Multiplication and Division

Count the significant digits in each item of data. The answer should have the same number of significant figures as the least precise measurement.

Multiplication

23.904 significant digits
$\underline{\mathrm{x} 5.10} 3$ significant digits $\quad \leftarrow$ least precise
121.89

Answer: 1223 significant digits

0.15	2 significant digits	
$\frac{\mathrm{x} 3.940}{0.591}$	4 significant digits	

Answer: $0.59 \quad 2$ significant digits

Division

$27.50 \quad \square \div \square 1.5=18.33$ Answer: 18 (2 significant digits)

4 significant 2 significant digits
digits (least precise)
$\frac{0.036850}{0.135} \frac{(\underline{5 \operatorname{sig} \mathrm{fig})}}{(3 \text { sig fig })}=0.27296$

Answer: 0.273
(3 sig fig)

Rounding

When the first digit to be dropped is 5 or greater, the last digit should be raised by

1. one.
$454.49 \quad 454.5$ rounded to 4 sig fig
$732.9 \quad 733$ rounded to 3 sig fig
2. When the first digit to be dropped is 4 or less, the last digit should not be changed.
$93.39 \quad 93$ rounded to 2 sig fig
$44.04 \quad 44.0$ rounded to 3 sig fig
Do not round off numbers that are used for additional calculations. The final answer is rounded to the correct number of significant figures.

Be sure the value is still the same after rounding. For example: round 135 to 2
3. significant digits Answer: $1.4 \times 10^{2} \quad$ NOT 14.

Exercises

Do the following questions and round to the appropriate number of significant digits.
$\begin{array}{ll} & 8.125 \\ \text { (1) } & 0.625\end{array}$
$\begin{array}{cc} & 3.66 \\ \text { (2) } & 57.33\end{array}$
15.0
3.4
7.83
$\underline{0.37}$
7.356
(3) 94
5.12
0.87
42.25
$-\underline{-32.378}$
(5)

$$
\begin{array}{r}
5.222 \\
-0.032 \\
\hline
\end{array}
$$

(6)
9.083
-3.1
(7)
89.5×0.5
(8) 87.92×58
(9) 2.01×26.0
(10) $0.1046 \div 5.32$
(11) $0.004284 \div 0.042$
(12) $1005 \div 3.25$
(13) $45 \div 0.08$

		${ }_{101} \mathrm{O}_{0}$	(L)
${ }_{2} 01 \times 9$	(£)	$0 \cdot 9$	(9)
60ε	(zI)	0615	(¢)
$0{ }^{\circ} \mathrm{O}$	(it)	$\angle 8.6$	(t)
L6I0\%	(01)	011	(ع)
£'zs	(6)	じ¢	(z)
${ }_{501} \times 1.5$	(8)	$\checkmark^{\circ} 02$	(I)

Prepared by
June Jeffery, Educational Assistant
Marion Tichler, Data Entry \& Design
Updated February 1999

